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ARTICLE INFO ABSTRACT

Keywords: Losses from the combine corn header result in decreased yield and profit. The development of improved corn
Corn losses headers to reduce losses is hampered by lack of sufficient tools for kernel loss assessment. A loss assessment
Imaging system was developed that consisted of a residue clearing process to expose lost corn kernels on the ground, and

Machine vision a machine vision image system to quantify the exposed kernels. A mower deck was used to size-reduce and

remove residue with minimal kernel displacement. The vision system consisted of an optical system for imaging
the ground area and an image analysis program to identify lost kernels.

The image analysis corn kernel detection system achieved an average precision of 0.90. A further assessment
of system accuracy using random images from additional field tests resulted in an accuracy of 0.91. The com-
bined residue clearing and machine vision systems achieved an overall system accuracy of 0.82 in field tests
evaluating staged losses using known quantities of kernels. The loss analysis system was able to distinguish
statistically significant (P < 0.05) differences in losses created by different corn header deck plate spacing,

while requiring less time and labor than conventional assessment methods.

1. Introduction

Corn kernel losses from the combine harvester result in decreased
yield and profit, create problems with volunteer corn, and serve as
overwintering sites for pathogens with potential to harm subsequent
crops (Hanna, 2010). Losses from the combine harvester corn header
often account for the largest portion of total machine losses (Hanna
et al., 2002; Paulsen et al., 2014). Machine factors that can affect kernel
loss at the header would include, but not be limited to, deck plate
spacing, header operating speed, header alignment with the ground
contour, and harvester speed (Shauck and Smeda, 2011; Pishgar-
Komleh et al., 2013; Monhollen, 2020). Measuring kernel loss at the
header usually involves counting kernels on the ground in a given area
or laying tarps in the rows prior to harvest to collect lost kernels (Hanna
et al., 2002; Monhollen, 2020). Both methods are labor intensive and
time consuming so they are difficult to use in experiments with many
variables and replicates. Additionally these systems have limited area of
collection, typically less than 3 m? per replicate. A system that provided
precise, fast estimates of lost corn kernels over a large collection area
would provide better assessments of corn header performance. Ulti-
mately such a system could be used to detect losses during harvest and
real-time machine adjustments made to reduce these losses.

Previous research has shown that vision systems can be used to
analyze corn kernels to estimate quality, detect kernel defects and
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damage, and estimate physical properties (Valiente-Gonzalez et al.,
2014; Orlandi et al., 2018; Li et al., 2019). For instance, a camera and
hardware based image analysis system was able to inspect of up to 75
kernels s~! at an accuracy of 91% (Pearson, 2009). Most of these sys-
tems required the corn kernels to be placed in laboratory fixtures where
kernels were hand separated so they do not touch since touching ker-
nels were not segmented accurately (Li et al., 2019).

More recently systems have been developed that do not require
separation of kernels. A vision system was developed to identify kernels
fragments to assess level of kernel size-reduction in whole-plant corn
silage without requiring separation of kernels from the non-grain
fractions (i.e. stalk, husk, cob and leaves) (Rasmussen and Moeslund,
2019). Other systems have been developed that detect broken grain
from a mass of grain flowing in the clean grain elevator of combine
harvesters (Escher and Krause, 2014; Pezzementi et al., 2016). How-
ever, there has not been previously published research on using vision
systems to detect corn kernels lost to the ground during harvest. A
major challenge of this task is that plant residue must first be cleared to
expose, but not displace, the kernels on the ground. Therefore, the
objectives of this research were to develop a complete system to de-
termine corn kernel losses caused by the combine harvester corn
header. This system would include a residue clearing system to reveal
lost kernels on the ground and a machine vision image system to
quantify the kernels lost. A final objective would be to use the

Received 31 January 2020; Received in revised form 4 May 2020; Accepted 7 May 2020

0168-1699/ © 2020 Elsevier B.V. All rights reserved.


http://www.sciencedirect.com/science/journal/01681699
https://www.elsevier.com/locate/compag
https://doi.org/10.1016/j.compag.2020.105496
https://doi.org/10.1016/j.compag.2020.105496
mailto:kjshinne@wisc.edu
https://doi.org/10.1016/j.compag.2020.105496
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compag.2020.105496&domain=pdf

N.S. Monbhollen, et al.

developed system to quantify corn kernel losses as affected by corn
header deck plate spacing.

2. Residue clearing system

Quantifying corn kernels on the soil surface required removing re-
sidue without disrupting or moving the corn kernels below. Several
residue clearing methods were investigated including air entrainment,
mechanical transport, and a combination of the two (Monhollen, 2020).
Ultimately the residue was removed using a combination of size-re-
duction and vacuum by using a John Deere (Moline, IL) model HC54
mower deck and associated X758 tractor. The mower blades cut the
remaining crop stubble, size-reduced the residue, lifted the detached
residue by the vacuum created by the rotating blades, and then ejected
the residue laterally from the row of interest. The mower was equipped
with a 137 cm wide deck and was configured with three conventional
mower blades (part number M164016) operated at 3517 rev:min~ . A
cutting blade height of approximately 6 cm was used. Kernels that do
not fall to the ground but are located within the residue would be
displaced by this system, resulting in an under estimate to true kernel
losses.

3. Machine vision hardware

The system hardware consisted of a transport trailer, a machine
vision camera and lens, a rotary encoder and microcontroller to mea-
sure image spacing, a host computer for image acquisition control and
data processing, a supportive frame and covers for protection of the
camera and control of ambient lighting, and an auxiliary lighting
system (Fig. 1).

The trailer was designed so that no frame members would interfere
with the defined image region of interest (ROI) which consisted of an
area 101 cm long and 76 cm wide which extended 38 cm to each side of
the evaluated corn row. Camera height and trailer pitch were adjustable
to ensure a level imaging plane. A wheel-driven rotary encoder (Koyo
Electronics Industries Co. model TRD-N500-RZWD, Kodiara, Japan)
was utilized to measure distance traveled between images.

A lighting system was used to provide the consistent light intensity
required for the 400 us exposure time used. Ten LED light pods (model
WL-15W, Super Bright LEDs Inc., St. Louis, MO) of 780 Im intensity and
6000 K color temperature were fixed in a bright-field format. The lights
used a 45 degree beam angle lens and were oriented to minimize var-
iation in light intensity across the imaged area. The lights were posi-
tioned in parallel with the camera lens plane.

The machine vision camera was a FLIR model Blackfly S GigE (FLIR
Systems, Wilsonville, OR) 12MP RGB with a 1/1.7 in. CMOS photo-
detector and rolling shutter capable of 2.5 fps at the maximum specified
image resolution (4000 x 3000 pixels) with an exposure range of 10 us

Fig. 1. Imaging system showing: (1) machine vision camera, (2) wheel-driven
rotary encoder, and (3) auxiliary light system. Front cover removed.
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to 30 s. Image data transfer used a combination of FLIR Spinnaker SDK
software and MATLAB (Mathworks, Natick, MA) Image Acquisition
Toolbox. The manually adjustable lens was a Theia Technologies (Theia
Technologies, Wilsonville, OR) model SL410 which provided focus,
zoom, and iris control.

The imaged area was originally calibrated by adjusting camera
zoom and focus to view an area that was 76 cm wide (i.e. corn row
spacing) at the centermost point of the image. However, this resulted in
an actual imaged area that was larger than the desired image area of
0.767 m? (1.01 x 0.76 m) due to image distortion. An image of a
checkerboard with known grid dimensions was acquired and image
processing performed to correct image distortion before calculating
actual imaged area. Actual image area as a result of image distortion
was determined to be 0.983 m?.

Image acquisition was triggered in response to a signal provided by
the position of the camera cart wheel at defined intervals. Wheel ro-
tation was measured by the rotary encoder, and its output converted
into relative position using an Arduino (Adafruit Industries, New York,
NY) Nano microcontroller. Connection with the host computer was
utilized through USB serial communication by use of the MATLAB
Support Package for Arduino.

4. Faster R-CNN and image training

Detection and classification of corn kernels within the acquired
training images was performed using a corn kernel detection program
developed using a Faster Regions with Convolutional Neural Networks
(Faster R-CNN) for purposes of object detection (Fig. 2). An existing
CNN that was pre-trained using the ImageNet database (Deng et al.,
2009) was retrained for corn kernel detection to minimize the number
of training examples required to approach the desired accuracy of 95%.
In this study, the publicly available Resnet-50 CNN architecture was
selected to utilize the significant number of network layers afforded by
residual network connections (He et al., 2016). Retraining and im-
plementation of the existing Resnet-50 CNN was performed using the
MATLAB Deep Learning Toolbox Model for ResNet-50 Network.

To detect corn kernels, a Faster R-CNN detector was chosen to uti-
lize a region proposal network (RPN) which shares convolutional layers
with the object detection network, utilizing anchor boxes to propose
features before classifying these features by predefined class (Ren et al.,
2015) (Fig. 2). The RPN proposed regions by evaluating the feature
maps from earlier feature extraction layers in the Faster R-CNN. Initial
assessment of the likeliness of an area to be a region of interest (i.e. corn
kernels) was performed by the RPN by assessing the image in parts
using a sliding window technique. Bounding boxes were proposed for
areas of the image above a certain threshold of likeliness to contain a
corn kernel. The bounding box regions were pooled and sent to the
remaining layers of the Faster R-CNN where they were classified de-
pending on whether or not a corn kernel represented an object class
being assessed. The RPN did not classify objects, but rather suggested
regions of possible feature locations to minimize the unnecessary clas-
sification of areas of the image that were unlikely to contain an object,
resulting in a faster detection process.

Implementation of a Faster R-CNN detector determined data for the
detected object class and confidence, as well as a bounding box re-
presenting object location and an estimation of object size in the image.
The Faster R-CNN was trained as five epochs with an initial learn rate of
1.0 x 107 and a mini-batch size of one.

Retraining of the network for the detection of corn kernels utilized
datasets of actual images created for the specific application of de-
tecting corn kernels on the soil. This ground truth data was selected to
provide examples of common in-field loss scenarios expected to be
encountered during harvest, as well as unusual field conditions that
sought to increase the diversity of this machine vision application.

Ground truth image collection was conducted using different con-
ditions of soil moisture, soil type, residue quantity, light intensity,
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Fig. 2. Schematic of Faster R-CNN utilizing a region proposal network (RPN) used to determine regions of interest (ROI) for detection and classification of corn

kernels within images.

ground cover type and quantity, and kernel moisture, quality, and size.
Images collected for training and validation of the Faster R-CNN re-
presented a random distribution of kernels representative of typical
header losses. Ground truth RGB images were captured using handheld
and cell phone cameras and the machine vision camera (all 12MP —
3000 x 4000 pixel resolution). In a similar fashion to Montalvo et al.
(2016), each 12 MP ground truth image collected for the purposes of
training was divided into 12 equal subset images of 1000 x 1000 pixels
to simplify annotation of the ground truth image data.

Creation of ground truth data was performed manually using the
MATLAB Image Labeler. A single label was used to define kernels as
objects for all ground truth image subsets. Object selection consisted of
a box placed around the outer boundaries of the kernel. Ground truth
data was not stored as image pixels, but rather stored as metadata of
kernel location corresponding to area coordinates within the specified
subset image (Fig. 3). This coordinate metadata was then referenced
during training.

A total of 299 ground truth images were subdivided into 3588
subset images containing approximately 25,000 manually annotated
kernel instances. These subset images were utilized in training and
validation of the image analysis program, with 80% (2,870) of the
images used for training and 20% (718) used for validation. The subset
images were randomly assigned to either the training or validation
datasets with each image being assigned to only one dataset to ensure
uniqueness.

Fig. 3. Example of ground truth data subset containing labeled region of in-
terest (ROI) objects of a single class representing individual kernels.

Validation of the accuracy of the image analysis program was per-
formed by assessment of the Average Precision (AP) metric. Validation
images were processed by the program and a comparison was made
between generated and manually drawn boundary boxes. A False
Positive (type 1 error) was defined as a kernel identified by the program
that did not have a manually derived box associated with it. A False
Negative (type 2 error) was defined as a manually identified kernel that
was not detected. A True Positive occurred where the program and
manual boundary boxes agreed. Precision was defined as the ratio of
the True Positives to the sum of all positive instances of objects de-
termined by the program (eqn. 1). Recall was defined as the ratio of
True Positives to the sum of the True Positives and False Negatives (eqn.
2). Average Precision was defined as the average of the evaluated
precision for recall values from 0 to 1 (eqn. 3).

An additional assessment of image analysis accuracy was done using
a group of subset images randomly selected from the deck plate spacing
experiments (see section 5.2). Each subset image was processed and
evaluated for type 1 and type 2 errors. Two separate, independent
manual assessments were then performed on the same group of subset
images by individuals trained to identify kernels and assess image
analysis accuracy. This was done by assessing the program identified
bounding box locations to determine if they represented kernels and
quantifying any mistakes made (type 1 errors), and then quantifying
any kernels in the image that were not identified by the program (type 2
errors). A metric defined as the Combined Accuracy (CA) was calcu-
lated to quantify the combined impact of type 1 and 2 errors. The CA
was an assessment of error in comparison to a typical trained human
ability to detect kernels. The CA was determined for each subset image
by subtracting the False Positives (type 1 errors) from the True Positives
and finding the proportion relative the sum of the True Positives and
the False Negatives (type 2 errors) (eqn. 4). An average CA for all subset
images was determined for both assessors.

P = Tp/(Tp + Fp) (@)

R = Tp/(Tp + Fy) 2

AP = j(:lP(R)dR @)

CA = (Tp — Fp)/(Tp + Fy) (C))
where:

P Precision of the image analysis kernel detector

R Recall of the image analysis kernel detector

AP Average precision of the image analysis kernel detector
Tp True positive

Fp False positive (type 1 error)

Fy False negative (type 2 error)

CA Combined accuracy of the image analysis kernel detector
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5. Materials and methods
5.1. Staged loss experiments

The staged loss experiments were conducted to determine the ef-
fectiveness of the combined residue clearing and the kernel detection
machine vision systems. Experiment No. 1 was conducted in WI
(43.3380°, 89.3804°) and Experiment No. 2 conducted in IN (39.5859°,
85.8636°). The fields were first harvested so that only three adjacent
rows were left standing. The ears of these rows were then removed by
hand for a distance of approximately 60 m. These two methods were
used to insure there were no lost kernels in the image area prior to
imaging. Kernels were then placed by hand within the camera system
image area (0.983 m?) and distributed approximately evenly on either
side of the center row. Quantities of dispersed kernels per replicate (16
and 32 replicates in Experiments No. 1 and 2, respectively) were ran-
domly varied between 20 and 100 kernels at a consistent spacing of
1.8 m between image centers. A combine harvester with a non-chop-
ping corn header was then used to harvest the three rows in such a way
that there was no wheel traffic in these rows. The hand dispersed ker-
nels were consequently covered with residue as would be typical during
normal harvesting.

The residue clearing mower was then used to clear residue across all
replicates locations collectively. The outside two rows were cleared first
by traveling axial to the row with the material directed away from the
center row, before the center row was then cleared. This progression
was used so that residue cleared from the row of interest would not be
impeded by stalks and residue in the adjacent rows. A consistent ground
speed of approximately 2 km h~! was used for all operations and the
mower blade cutting height was set to approximately 6 cm.

Two (Experiment No. 2) or three (Experiment No. 1) residue
clearing operations were performed, with images captured after each
clearing operation. Images were captured at each of the replicate lo-
cations with the camera system stationary and the camera centered
above the defined image area. Processing of each image was performed
using the image analysis program, and the estimated quantity of kernels
in each image determined at 0.90 and 0.95 confidence.

A System Accuracy (SA) was calculated to quantify the combined
accuracy of the residue clearing and machine vision systems. Under
identifying the known number of kernels could be attributed to residue
still covering kernels, the residue clearing mower displacing kernels, or
the image system not detecting uncovered kernels (type 2 error). Over
identifying the known number of kernels would be a type 1 error of the
image system. The method of calculating SA (eqn. 5) assessed both
under and over quantification of kernels relative to the known number
of hand placed kernels as an absolute error and therefore accounted for
both equally.

SA =1 — (IKgkn — Kpl/Kgn) )

where:

SA System accuracy at each image location.
Kkn Known quantity of kernels placed at each image location.
Kp Quantity of kernels detected by the image system.

Mean SA was calculated for staged images after each residue
clearing operation. Standard error of the mean (SEM) was calculated for
each mean SA. A one-way analysis of variance was performed using
Excel to determine difference between sample means within each ex-
periment.

5.2. Deck plate spacing experiments
An important use of the developed system is to assess corn header

performance with regard to kernel loss. Previous research has shown
that deck plate spacing was very influential in header losses (Quick,
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2003; Monhollen, 2020). Therefore, evaluation of losses as a result of
different deck plate spacings was assessed by the residue clearing plus
the machine vision systems. Experiment No. 3 was conducted in IN
(39.5859°, 85.8636°) and Experiment No. 4 conducted WI (43.3380°,
89.3804°). Experiment No. 3 used a 12-row Claas (Harsewinkel, Ger-
many) model 12-30 non-chopping corn header and Experiment No. 4
used a 12-row John Deere model 612C chopping corn header. Deck
plate spacings of 29, 37, and 44 mm were used for both experiments
and spacing was measured at the beginning of the fluted section of the
stalk rolls.

Each experiment consisted of nine plots each 50 m long. In
Experiment No. 3 all nine plots were aligned end to end and arranged in
three blocks. Each block had three plots in which the three deck plate
spacings were randomly assigned. Experiment No. 4 was similar except
that the three blocks were arranged side-by-side rather than aligned end
to end. The combine harvester was configured with the chopper of the
residue distribution system disabled so that kernels lost from the back
of the combine would not be thrown into the data rows (see below). The
combine harvester was operated at approximately 6.4 kmh~*.

Of the 12 harvested rows, rows 2 and 11 were selected for assess-
ment. The residue clearing procedure described in section 5.1 was
performed for all test plots after all the plots had been harvested. After
imaging, the residue clearing procedure was again applied on rows 2
and 11 and another set of images collected.

Each of the two rows imaged was considered a replicate row with 20
images collected per row, so 40 images were collected per plot. Since
there were three replicate plots for each deck place spacing, there were
120 images per deck plate spacing and a total of 360 images collected.
After all 360 images were collected, the residue clearing mower was
operated over the data rows again and the image taking process was
repeated resulting in an additional 360 images. Care was taken to
prevent any wheel traffic in the data collection rows from the combine
or the residue clearing mower.

Image collection was performed while moving at a ground speed of
2.4 kmh ™!, Images were captured at a spacing of 1.5 m controlled by
the imaging control system. Camera settings were not altered and all
images were taken using a camera exposure of 400 us. Evaluation of the
images was performed post-collection to allow for rapid image collec-
tion during experiments. Post-processing of images was automated and
outputs calculated as a quantity of kernels present within each image at
0.90 and 0.95 confidence. Specific mass of estimated kernel loss was
determined using image area (0.983 m?) and converting kernel quantity
to a mass basis by using a conversion of 90,000 kernels per 25.4 kg
(Nielsen, 2018).

Average kernel specific mass (i.e. kg ha™') for each replicate was
determined from the 40 images taken per plot and the SEM calculated.
Comparison between sample means of the three deck plate spacings for
all replicates was performed using Tukey’s Honest Significant
Difference (HSD) using JMP Pro (ver. 13.1, SAS Institute Inc., Cary,
N.C.). Using calculated sample means and variances for the three deck
plate spacings, an assessment of the number of images required to de-
termine statistical significance between the three deck plate spacings
was made. To determine sample size, an independent two sample t-test
was performed between the three comparable spacings for a target
significance level of 0.05. The required sample size (i.e. degrees of
freedom) was determined by the t statistic required to exceed this sig-
nificance level.

6. Results
6.1. Machine vision accuracy

The AP (eqn. 3) of the image analysis system was 0.90 using the
validation dataset. An ideal detector achieves a precision and recall of 1

(AP = 1), resulting in a square precision-recall plot. The precision-re-
call plot for the validation dataset approximated this ideal shape,
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Fig. 4. Precision-Recall curve for final iteration of image analysis system for the
validation dataset of 718 images.

achieving good precision even at greater recall values, meaning it de-
tected kernels with high confidence without a significant number of
missed kernels (Fig. 4). Assessment of CA (eqn. 4) consisting of random
images collected during deck plate spacing experiments was 0.91. This
assessment reinforces the accuracy of the image analysis system on
images beyond those assessed in the validation dataset.

6.2. Staged loss experiments

Average SA (eqn. 5) for the staged loss experiments was between
0.58 and 0.86 (table 1). Analysis using greater confidence generally
resulted in lower accuracy because the analysis was more conservative.
In one case the system accuracy was greater at greater confidence likely
because there were fewer false positives.

Average SA after one residue clearing operation was 0.58 and 0.80
for the Experiment No. 1 and No. 2, respectively (table 1). It was ob-
served that long stalks were left after the first clearing operation with
Experiment No. 1 which made identifying kernels more difficult
(Fig. 5). Residue was more thoroughly removed with a single clearing
operation in Experiment No. 2 which accounts for the better SA in this
experiment (Fig. 5).

The SA considerably improved after the second residue clearing
operation in Experiment No. 1 but accuracy numerically declined in
Experiment No. 2 (table 1). The second residue clearing operation in
Experiment No. 1 removed many long stalks left after the first opera-
tion, so more kernels were uncovered and the SA improved. The re-
duction in SA after the second clearing operation with Experiment No. 2

Table 1
Average System Accuracy (eqn. 5) of the complete kernel loss analysis system
using staged kernel images for varying number of residue clearing operations.

Number of Residue Clearing Average System Accuracy

Operations 0.90 c1 ! SEM 0.95 CI SEM
Experiment No. 1)

One 0.58b 0.05 0.52¢ 0.05
Two 0.80a 0.03 0.76b 0.03
Three 0.82a 0.03 0.86a 0.03
LSD (P = 0.05) 0.10 0.09

Experiment No. 2[%!

One 0.80a 0.02 0.76a 0.02
Two 0.78a 0.02 0.75a 0.02
LSD (P = 0.05) 0.05 0.05

? Cl is the Confidence Interval defined by the image analysis program.

 Number of replicate images was 16 and 32 for Experiments No. 1 and 2,
respectively.

¢ Least square difference. Averages in columns with different letters are
significantly different at 5% significance level.
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could have been the result of kernels being displaced out of the image
area by the mower blades. To quantify the extent of kernel displace-
ment, future tests would require that kernels be hand counted in the
image area after residue clearing and image analysis.

In Experiment No. 1 the residue cover left after the third clearing
operation was only slightly improved from that after the second
clearing operation, so the SA did not significantly increase (0.90 CI). It
was observed that in Experiment No. 1, the residue cover left after two
or three clearing operations was similar to that left after a single op-
eration in Experiment No. 2. The soil and residue conditions were not
quantified, but were considered to be typical “wet” and “dry” harvest
conditions in Experiments No. 1 and 2, respectively. This likely ac-
counted for differences in effectiveness of the residue clearing system
between experiments.

Because the residue clearing performance can be variable with crop
and environmental conditions, in the future it might be useful to de-
velop an associated residue detection system and specify that kernel
losses be quantified only when the residue cover is below a minimum
threshold. Alternatively, assessment of residue cover could be part of
the machine vision system, determining the quantity of kernels visible
in relation to the portion of the imaged area covered by residue thereby
accounting for the visibility of kernels in the image when assessing
losses.

6.3. Deck plate spacing experiments

The SEM for losses at 29 and 37 mm deck plate spacings showed
small variability between replicates while the losses at the 44 mm
setting were much more variable (Fig. 6). This result was similar for
both Experiments No. 3 and 4 (data not shown). Accuracies assessed for
the image analysis system using known kernel quantities (see section
6.2) suggest that the variability of loss at 44 mm spacing was likely the
result of spatial variability rather than solely image system variability
(Fig. 7). Estimated kernel loss was significantly affected by deck plate
spacing with dramatic increases when spacing was increased from 37 to
44 mm (Figs. 8 and 9). Corn ears are tapered with the smallest diameter
at the tip and generally the largest diameter near the middle of the ear.
Once the deck plate spacing exceeds some portion of the ear diameter,
shelling of kernels by the counter-rotating stalk rolls can occur. Shelling
in this manner will depend on orientation of the ear as it approaches the
deck plate (i.e. base or tip first) and the diameter of the ear relative to
deck plate spacing. Storck et al. (2007) sampled 280 corn ears across
seven different hybrids and reported that average maximum ear dia-
meter varied from 45.8 mm * 2.4 mm to 51.2 mm =* 2.7 mm.
Monhollen (2020) reported base and middle diameters of 120 ears of
43 mm # 3.5 mm and 47 mm * 3.3 mm, respectively. These results
show why kernel loss can be very dependent on even small changes in
deck plate spacing and can vary as ear size changes spatially due to
agronomic conditions.

Estimated loss of kernels increased when images were taken after
the second residue clearing operation in Experiment No.l (Fig. 8)
where estimated losses were greater by 44%, 30% and 19% for 29, 37
and 44 mm deck plate spacing, respectively. The second residue
clearing operation evidently uncovered additional kernels that were
hidden by residue after a single clearing operation, providing a better
estimate of losses. This was not the case for Experiment No. 4 where a
single residue clearing operation would have been sufficient to estimate
corn head losses (Fig. 9).

Losses were greater with the chopping corn head (Experiment No. 3)
than the non-chopping corn head (Experiment No. 4), but a direct
comparison is not appropriate because the experiments were not con-
ducted at the same time or with the same crop conditions. In
Experiment No. 3 the estimated losses at 90% confidence varied from
236 to 630 kg ha™! (3.7 to 10.0 bu ac™) at 44 mm deck plate spacing
while losses at 29 and 37 mm spacing did not exceed 112 kg ha™* (1.8
bu ach). Average yield was 14,350 kg ha~! (227.5 bu ac™?) so losses
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Fig. 5. Comparison of residue remaining after one (left) or three (middle) residue clearing operations in Experiment No. 1 and a single clearing operation in
Experiment No. 2 (right). Configuration of residue clearing mower was the same for both experiments. Dashed yellow lines represent the approximate center of the

rows where images were taken.
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Fig. 6. Estimated kernel loss with a non-chopping corn head (Experiment No.
3) using 29, 37 and 44 mm deck plate spacing after two residue clearing op-
erations and then use of the machine vision image analysis system at 90%
confidence. Each bar represents one replicate plot in which 20 images were
used to estimate losses. Error bars represent SEM.

ranged from 0.8% to 4.4% of yield. In Experiment No. 4 the estimated
losses at 90% confidence varied from 540 to 1156 kg ha™* (8.6 to 18.4
bu acl) at 44 mm deck plate spacing while losses at 29 and 37 mm
spacing did not exceed 176 kg ha™! (2.8 bu ac'). Average yield was
10,920 kg ha™! (173.0 bu ac™) so losses ranged from 1.6% to 10.6% of
yield. Average losses using the manual tarp method were 35 and 400 kg
ha™*! (0.6 to 6.4 bu ac™) for deck plate spacing of 35 and 43 mm, re-
spectively (Monhollen, 2020). Losses determined by collecting lost
kernels from the soil were 50 to 110 kg ha~! (0.8 to 1.7 bu ac™) for an
unspecified deck plate spacing (Hanna et al., 2002).

An evaluation of required sample size to achieve statistical sig-
nificant differences between losses at different deck plate spacings of 29
vs.44 mm and 37 vs. 44 mm spacing could be found in as few as 3 to 6
images (Table 2). Determining the differences between 29 vs. 37 mm
spacing however required between 10 and 38 images. The sensitivity of
the system was such that significant differences in kernel loss between
29 and 37 mm deck plate spacing were determined in both experiments
(Figs. 8 and 9). This was not the case in a similar experiment using the
same corn head and the tarp collection method where six replicate
sampling locations were used (Monhollen, 2020).

Measuring kernel loss frequently involves hand sampling lost ker-
nels from an area that is less than 3 m? (Hanna et al., 2002; Monhollen,
2020) and sometimes as small an area as 0.25 m? (Pishgar-Komleh

Fig. 7. Spatial variability in kernel loss after harvest with corn header using
44 mm deck plate spacing after one residue clearing operation (Experiment No.
4). Note that kernel loss is moderate (blue outline); then heavy (green outline);
then light (red outline).
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Fig. 8. Estimated kernel loss with a non-chopping corn head (Experiment No.
3) using 29, 37 and 44 mm deck plate spacing after one (red bars) or two (blue
bars) residue clearing operations and then use of the machine vision image
analysis system at 90% confidence. Each bar represents the average of 120
images, error bars represent SEM and averages with different letters are sta-
tistically different at 5% significance level.
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Fig. 9. Estimated kernel loss with a chopping corn head (Experiment No. 4)
using 29, 37 and 44 mm deck plate spacing after one (red bars) or two residue
clearing operations and then use of the machine vision image analysis system at
90% confidence. Each bar represents the average of 120 images, error bars
represent SEM and averages with different letters are statistically different at
5% significance level.

Table 2
Required number of images to establish a significant difference at significance
level of 5% using image analysis program at 0.95 confidence.

Comparison of Deck Plate  Number of Residue Number of Images

Spacings Removal Required

(mm) Operations Exp. 3% Exp. 4
29 vs. 44 One 6 3

37 vs. 44 One

29 vs. 37 One 17 19

29 vs. 44 Two

37 vs. 44 Two 5

29 vs. 37 Two 38 10

@ Experiments No. 3 and 4 were performed with a non-chopping and chop-
ping corn headers, respectively.

et al., 2013). These systems are labor intensive, tedious and take so long
that limited replicates can be conducted during a time when crop
conditions are similar. For instance Hanna et al. (2002) and Pishgar-
Komleh et al. (2013) reported losses using only four replicate samples
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per experimental treatment. The imaging system developed here takes
images that were each approximately 1 m?. The loss estimated for each
deck plate spacing represented in Experiments No. 3 and 4 represent
loss assessments over approximately 120 m?, or more than 10 times the
total assessment area of the manual systems referenced above. For each
number of residue clearing operations used, the data was collected in
one day by a single-person. The spatial variability of the loss data at
44 mm deck plate spacing shows the value of the large total sampling
area possible with the developed system. When labor intensive systems
limit the number measurements to only a few replicates, it is possible
that data bias can occur.

Assessment of losses for purposes of corn header development ap-
pears to be feasible with the current status of the residue clearing and
corn kernel loss analysis systems. Implementation for this purpose
would require assessment of crop conditions to determine the required
configuration of the residue clearing mower (i.e. mower deck height,
mower ground speed, and number of clearing operations). This as-
sessment could be done qualitatively or could be based on quantified
criteria. For instance, a test similar to the staged kernel tests could be
conducted and the mower configuration could be chosen that achieves
a determined accuracy. Tests on different header configurations could
then proceed and subsequent loss measurements would use this con-
sistent residue clearing mower configuration. Alternatively, detection
of residue cover could be part of the system so that kernel detection
would only proceed when the residue cover in the imaged area is less
than a predetermined value. An additional feature to detect lost whole
or partial corn ears would also add value to the developed system.

7. Conclusions

The Faster R-CNN machine vision image analysis system achieved
an average precision (AP) of 0.90. This value was assessed over a range
of validation images in conditions beyond those typically found during
harvest and supports the robustness of this application for corn kernel
detection. A further assessment of system accuracy using random
images from the deck plate spacing experiments resulted in an accuracy
of 0.91. The combined residue clearing and corn kernel loss analysis
systems achieved a system accuracy of 0.82 (at 0.90 CI) when known
numbers of kernels were hand staged in the row. This system accuracy
reflects issues with the residue clearing mower not uncovering kernels
or displacing kernels in addition to the accuracy of the image system.
Overall accuracy of the system was most affected by the quantity of
corn residue left after a residue clearing operation. Tests for assessment
of losses using the kernel loss analysis system at different deck plate
spacings demonstrated the ability to detect statistically significant
(P < 0.05) differences in losses between different spacings. The de-
veloped systems were able to detect lost corn kernels over a much
greater sampling area achieving many more replicate measurements
and requiring less labor than previous methods.
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